Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113782, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358892

RESUMO

Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Oócitos , Animais , Ciclina B1 , Regulação para Baixo , Processos de Crescimento Celular
2.
Nat Commun ; 12(1): 1837, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758202

RESUMO

Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Meiose , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Cromatografia Líquida , Feminino , Meiose/efeitos dos fármacos , Meiose/genética , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Ácido Okadáico/toxicidade , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/genética , Fosforilação , Progesterona/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/isolamento & purificação , Proteínas Recombinantes , Espectrometria de Massas em Tandem , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis
3.
Front Mol Biosci ; 4: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611991

RESUMO

ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities) superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1.

4.
J Mol Biol ; 427(2): 312-27, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25451597

RESUMO

The DnaK/Hsp70 chaperone system and ClpB/Hsp104 collaboratively disaggregate protein aggregates and reactivate inactive proteins. The teamwork is specific: Escherichia coli DnaK interacts with E. coli ClpB and yeast Hsp70, Ssa1, interacts with yeast Hsp104. This interaction is between the middle domains of hexameric ClpB/Hsp104 and the DnaK/Hsp70 nucleotide-binding domain (NBD). To identify the site on E. coli DnaK that interacts with ClpB, we substituted amino acid residues throughout the DnaK NBD. We found that several variants with substitutions in subdomains IB and IIB of the DnaK NBD were defective in ClpB interaction in vivo in a bacterial two-hybrid assay and in vitro in a fluorescence anisotropy assay. The DnaK subdomain IIB mutants were also defective in the ability to disaggregate protein aggregates with ClpB, DnaJ and GrpE, although they retained some ability to reactivate proteins with DnaJ and GrpE in the absence of ClpB. We observed that GrpE, which also interacts with subdomains IB and IIB, inhibited the interaction between ClpB and DnaK in vitro, suggesting competition between ClpB and GrpE for binding DnaK. Computational modeling of the DnaK-ClpB hexamer complex indicated that one DnaK monomer contacts two adjacent ClpB protomers simultaneously. The model and the experiments support a common and mutually exclusive GrpE and ClpB interaction region on DnaK. Additionally, homologous substitutions in subdomains IB and IIB of Ssa1 caused defects in collaboration between Ssa1 and Hsp104. Altogether, these results provide insight into the molecular mechanism of collaboration between the DnaK/Hsp70 system and ClpB/Hsp104 for protein disaggregation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Simulação por Computador , Endopeptidase Clp , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Genetics ; 192(1): 185-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22732191

RESUMO

Saccharomyces cerevisiae Hsp104 and Escherichia coli ClpB are Hsp100 family AAA+ chaperones that provide stress tolerance by cooperating with Hsp70 and Hsp40 to solubilize aggregated protein. Hsp104 also remodels amyloid in vitro and promotes propagation of amyloid prions in yeast, but ClpB does neither, leading to a view that Hsp104 evolved these activities. Although biochemical analyses identified disaggregation machinery components required for resolubilizing proteins, interactions among these components required for in vivo functions are not clearly defined. We express prokaryotic chaperones in yeast to address these issues and find ClpB supports both prion propagation and thermotolerance in yeast if it is modified to interact with yeast Hsp70 or if E. coli Hsp70 and its cognate nucleotide exchange factor (NEF) are present. Our findings show prion propagation and thermotolerance in yeast minimally require cooperation of species-specific Hsp100, Hsp70, and NEF with yeast Hsp40. The functions of this machinery in prion propagation were directed primarily by Hsp40 Sis1p, while thermotolerance relied mainly on Hsp40 Ydj1p. Our results define cooperative interactions among these components that are specific or interchangeable across life kingdoms and imply Hsp100 family disaggregases possess intrinsic amyloid remodeling activity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Endopeptidase Clp , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Príons/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química
6.
BMC Biochem ; 12: 61, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22132756

RESUMO

BACKGROUND: Caseinolytic proteases (ClpPs) are barrel-shaped self-compartmentalized peptidases involved in eliminating damaged or short-lived regulatory proteins. The Mycobacterium tuberculosis (MTB) genome contains two genes coding for putative ClpPs, ClpP1 and ClpP2 respectively, that are likely to play a role in the virulence of the bacterium. RESULTS: We report the first biochemical characterization of ClpP1 and ClpP2 peptidases from MTB. Both proteins were produced and purified in Escherichia coli. Use of fluorogenic model peptides of diverse specificities failed to show peptidase activity with recombinant mycobacterial ClpP1 or ClpP2. However, we found that ClpP1 had a proteolytic activity responsible for its own cleavage after the Arg8 residue and cleavage of ClpP2 after the Ala12 residue. In addition, we showed that the absence of any peptidase activity toward model peptides was not due to an obstruction of the entry pore by the N-terminal flexible extremity of the proteins, nor to an absolute requirement for the ClpX or ClpC ATPase complex. Finally, we also found that removing the putative propeptides of ClpP1 and ClpP2 did not result in cleavage of model peptides. We have also shown that recombinant ClpP1 and ClpP2 do not assemble in the conventional functional tetradecameric form but in lower order oligomeric species ranging from monomers to heptamers. The concomitant presence of both ClpP1 and ClpP2 did not result in tetradecameric assembly. Deleting the amino-terminal extremity of ClpP1 and ClpP2 (the putative propeptide or entry gate) promoted the assembly in higher order oligomeric species, suggesting that the flexible N-terminal extremity of mycobacterial ClpPs participated in the destabilization of interaction between heptamers. CONCLUSION: Despite the conservation of a Ser protease catalytic triad in their primary sequences, mycobacterial ClpP1 and ClpP2 do not have conventional peptidase activity toward peptide models and display an unusual mechanism of self-assembly. Therefore, the mechanism underlying their peptidase and proteolytic activities might differ from that of other ClpP proteolytic complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Multimerização Proteica , Proteólise , Alinhamento de Sequência , Serina Endopeptidases/genética
7.
Proc Natl Acad Sci U S A ; 108(17): 6915-20, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21474779

RESUMO

Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Endopeptidase Clp , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
N Biotechnol ; 28(3): 277-81, 2011 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20601270

RESUMO

Cell-free expression has received growing attention as an effective system to produce integral membrane proteins for biochemical studies. We have applied this technology for the production of the histidine kinase CpxA, an integral membrane sensor that regulates an envelope stress response in Escherichia coli. All phosphotransfer activities of detergent-solubilized CpxA synthesized in vitro have been characterized and compared with those of CpxA solubilized from bacterial membranes. The results demonstrate the simplicity and efficiency of this technology for purifying large quantities of functional membrane proteins.


Assuntos
Sistema Livre de Células , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/biossíntese , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Detergentes/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Micelas , Proteínas Quinases/química
9.
Protein Sci ; 16(11): 2445-53, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17905837

RESUMO

The Escherichia coli Cpx envelope stress system is comprised of three proteins; the periplasmic regulatory CpxP, the inner membrane sensor kinase CpxA, and the cytoplasmic transcriptional activator CpxR. Although misfolded envelope proteins activate the Cpx system, the molecular mechanism by which this signal is sensed remains largely unknown. In an attempt to reconstitute the Cpx system from purified proteins, we failed to produce the small CpxP protein in its natural periplasmic compartment, but a high protein level was achieved when it was produced in the cytoplasm. Silent base mutations in the first codons of the cpxP gene encoding the signal sequence or substitution by two well-characterized signal sequences, those of MalE and DsbA, resulted in a large increase of the CpxP level in the periplasm. Our results support the hypothesis that periplasmic expression could be inhibited by sequence elements in the early coding signal sequence region of cpxP.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/química , Sequência de Bases , Códon , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
10.
Mol Microbiol ; 62(2): 427-37, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17020581

RESUMO

To examine the relationship between folding and aggregation in the periplasm of Escherichia coli, we have analysed the cellular fates of exported proteins fused to either the wild-type maltose-binding protein (MalE) or the aggregation-prone variant MalE31. The propensity of fusion proteins to aggregate in the periplasm was determined by the intrinsic folding characteristics of the upstream protein. When beta-lactamase or alkaline phosphatase was linked to the C-terminus of MalE31, the resultant fusion proteins accumulated in an insoluble form, but retained their catalytic activity. In addition, these protein aggregates induced an extracytoplasmic stress response, similar to unfused MalE31. However, using a fluorescent substrate, we found that alkaline phosphatase activity was present inside periplasmic aggregates. These results suggest that periplasmic inclusion body formation may result in intermolecular interactions between participating proteins without loss of function of the fused enzymes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Periplasma/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas Ligantes de Maltose , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , beta-Lactamases/metabolismo
11.
Microb Cell Fact ; 3(1): 4, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15132751

RESUMO

The proper functioning of extracytoplasmic proteins requires their export to, and productive folding in, the correct cellular compartment. All proteins in Escherichia coli are initially synthesized in the cytoplasm, then follow a pathway that depends upon their ultimate cellular destination. Many proteins destined for the periplasm are synthesized as precursors carrying an N-terminal signal sequence that directs them to the general secretion machinery at the inner membrane. After translocation and signal sequence cleavage, the newly exported mature proteins are folded and assembled in the periplasm. Maintaining quality control over these processes depends on chaperones, folding catalysts, and proteases. This article summarizes the general principles which control protein folding in the bacterial periplasm by focusing on the periplasmic maltose-binding protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...